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Abstract. The problem of electromagnetic wave scattering from arbitrarily shaped 
scatterers recently solved by using an integral equation formulation is extended to treat the 
case of scattering by infinite cylinders. The method is based on describing the internal field 
of the scatterer in terms of an independent set of plane wave functions. Numerical stability 
conditions are satisfied. Numerical results are presented for cylinders of elliptic cross 
section for two independent incident waves. Results are also given for scattering by 
three-dimensional spheroidal scatterers of refractive index no = 1.33. The solution pre- 
sented is applicable for scatterers with size parameter (koa)  from the Rayleigh region 
(koa << 1) up to the geometrical optics limit (koa >> 1) provided for each given scatterer 
certain matrix elements can be calculated. 

1. Introduction 

The problem of the scattering of electromagnetic radiation from a homogeneous 
spherical dielectric scatterer has been solved by Mie (1908). For scatterers which are 
infinite rods of circular cross section, the same problem was solved by Rayleigh (1881) 
and Ignatowsky (1905). 

For inhomogeneous scatterers, and for homogeneous scatterers of other shapes, the 
scattering problem cannot be solved by the classical separation of variables technique. 
Several approximate methods have been devised in an attempt to solve these problems. 
For example there are the approximations of Rayleigh (1 899), Rayleigh-Gans (Gans 
1912) and Stevenson (1953). However, the range of validity of these approximations is 
restricted to scatterers of refractive index close to that of the surrounding medium, and 
whose size is small compared to the wavelength of the incident radiation. 

In recent years in many practical applications, knowledge of the scattering by 
non-spherical objects is required, and hence a general method is needed for the solution 
of this problem. Several attempts have been made; for example by Waterman (1965), 
Barber and Yeh (1975), Nelson and Eyges (1976) and Asano and Yamamoto (1975). 
The work of Nelson and Eyges was restricted to infinite cylinders, and that of Asano and 
Yamamoto sought to use spheroidal wavefunctions to solve the problem of scattering 
by a spheroid. 

Recently we have presented a new general method which involves the solution of 
the integral equation formulation of the scattering problem (Uzunoglu et al 1976a, b, 
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Holt et a1 1967a, b). The method can be applied not only to non-spherical scatterers, 
but to inhomogeneous scatterers also; the real restriction is involved in the necessity of 
being able to calculate certain matrix elements. The method guarantees that the 
scattering amplitude satisfies the Schwinger variational principle, and this results in 
numerical stability. So far the applications have been concerned with the scattering of 
electromagnetic radiation by spheroidal and ellipsoidal raindrops, where the refractive 
index is large. In this paper we consider in detail scattering by infinite cylinders of 
elliptic cross section. We also give results for a wide range of spheroidal scatterers of 
refractive index 1.33 +iO*O. 

2. General theory 

We restrict ourselves to giving a resum6 of the theory as it applies to scattering in two 
dimensions. An exposition of the general theory and its application to three- 
dimensional ellipsoids/spheroids has been given by Holt, Uzunoglu and Evans 
(Holt et a1 1976a, to be referred to as I). 

We shall assume that the incident wave is perpendicular to the axis (2) of the 
infinite cylinder. If the incident polarization is parallel to 2, the incident wave will be 
termed an E wave. If, on the other hand, the magnetic field is parallel to 2, the incident 
wave will be called an H wave. 

For an infinitely long cylindrical scatterer of dielectric E @ )  and cross-sectional area 
S, the integral equation describing the scattering can be written as 

E @ )  =Eo@)+G I, Y@?( 1 +&)g@, P’ )  E@’) dP’ (1) 

Eo@) = ti exp(iki . p )  (2) 

Y ( P )  = +I- 1 (3) 

g@, P’) = !iHP(kolP -dl1 (4) 

where 

is the incident wave, ki = ko (cos 4i, sin q5i) is the incident wavevector, 

and 

where H ! ! ) ( x )  is the Hankel function of order n. 
For the E-wave case, equation (1) simplifies to the scalar equation 

E @ )  = exp(iki p> +kg I, Y @ ’ ) g @ ,  p ~ b ’ )  d ~ ’ .  (5)  

The quantity most of interest in scattering problems is the scattering amplitude 
which describes the far-field behaviour of the scattered field. The asymptotic form of 
equation (1) is defined as 

similarly for equation ( 5 )  we have 
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Thus the scattering amplitudes for the E, H incident waves are, respectively 

and 

where 

A = (1 +i)k;/2/47r1/2 

and is is the scattered direction given as 

k, = koks = ko(cos 4s, sin 4,). 
In order to solve the scattering problem only the scattered field inside the scatterer is 

needed-the integrations in (8) and (9) only involve the internal field. Moreover the 
external field, if required, can be obtained by substituting the internal field in equation 
(1). 

As in I, we premultiply equation (1) by exp(-ikl . p)y@),  and integrate throughout 
the scatterer area and obtain 

and k l  is at present arbitrary. 
Equation ( 5 )  may be treated similarly. This is an integral equation only involving 

the field inside the scatterer. As such, its solution is not unique in the external region. 
However, since we only need the solution in the internal region, we can assume that the 
solution of (11) is square integrable and hence may be written as 

E‘H’b)  = I exp(ik2. p )  dk2 (13) 

or 

E‘E’@) = dE’(k2) exp(ik2. p )  dk2. (14) 

Substituting (12), (13) into (9) and its similar equation, we have: 

J w ~ ,  kz) e m ( k 2 )  dkz = giUl(k1, ki) 

(i) for the H wave 
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and 

(ii) for the E wave 

Equations (15) and (20) (or (18) and (21)) are a pair of coupled integral equations which 
together determine the amplitude. Unlike equation ( l ) ,  however, the kernel of (15) is 
not singular. We may therefore evaluate the integrations by N-point numerical 
quadrature. The integral equations then become algebraic linear equations, and the 
arbitrary vector kl is restricted to N arbitrary values which we take to be the same as the 
pivots. Thus (15) and (20) are replaced by 

N 

K(k,, k,) . @“’(k,)~j = &iUl(k,, ki) p = l , .  . . , N  
/ = 1  

and 

Provided that for each k, pivot, -k, is also a pivot, then, as is shown in I, the Schwinger 
variational principle is automatically satisfied. This results in the method being 
numerically stable, and convergence with N being guaranteed. 

3. Matrix elements for homogeneous elliptic cylinders 

For a homogeneous scatterer where 

y ( r )  = nz - 1 = constant 



Scattering of EM radiation from dielectric scatterers 417 

an important simplification occurs. This is due to the fact that for a homogeneous 
scatterer the internal field of the scatterer can be represented as a superposition of plane 
waves with a radial variable kono (Devaney and Wolf 1974) and hence 

(25) d H ' ( k 2 )  = S(k - k0no)D"(k2) 

where S(k) is the Diracdelta function. Consequently the integrations in (15), (18), (20), 
(21) reduce to one-dimensional integrals. 

We define the cross-sectional area S by the equation 

X L  y L  
-+7= 1. 
a b  

In order to apply the method outlined in 0 2 we need to be able to evaluate the 
matrices K, U1 in (22). The calculation of Ul(k l ,  k2) ,  the first Born term, is straightfor- 
ward and we obtain 

andJ,(x) denotes the Bessel function of order n. Wl(kl, k2)  is just a constant multiple of 
Ul(k l ,  k2 )  for homogeneous scatterers. 

In order to compute U(F)(klr k2)  we use the representation 

ddt exp[i(p -p ' )  . t]. 
Substituting (30) into (19) and using (27) gives 

O0 t dt 2 m  Jl(Xl)Jl(X2) I ddr x,x, UiE'(kl, k2)  = y2a2b2 lim 
c-ro+ t2-ki-it. Io 

where 

x, = IT-K,J (i = 1,2)  
and 

T = t(a cos d,, b sin dr) .  
Using the expansion (Watson 1966) 

(where C A ( x )  is a Gegenbauer polynomial) and the integrals (Watson 1966) 



418 N K Uzunoglu and A R Holt 

where 

m, = max(n, m) m, = min(n, m) 

and Snm is the Kronecker delta, we finally obtain 

n+m 
even 

where 

Y2 = a’ cos’ 4 + b’ sin’ 4. 
The evaluation of U$m (kl, k2) is similar and the result is 

(37) 

(39) 

n+meven 

where 

4. Numerical results 

4.1. Elliptic cross section infinite cylinders 

Numerical computation has been performed for elliptic cross section scatterers for E- 
and H-wave cases. Since for homogeneous scatterers quadrature points are required 
only for 4, we use n4 equally spaced 4 pivots. The matrix size of equation (22) is 
minimized using the symmetry and reciprocity properties of the matrix elements. The 
program is written in double precision and tested against the exact solution for circular 
cylinders with which an excellent agreement has been obtained. 

For elliptic cross section scatterers the accuracy of the results was ensured by 
increasing n4 and observing the convergence of the results. The number of pivots 
required to obtain convergence depends on the size, shape and refractive index of the 
scatterer. In table 1 a sample convergence pattern is given. 

In order to describe the depolarizing properties of the cylindrical scatterers it is 
essential to know the forward and backward scattering amplitudes. In tables 2, 3 
complex scattering amplitudes are presented for a range of a/b ratios. The total cross 
section U can be obtained by the optical theorem as 

U = - 2 ( ~ / k ~ ) ~ ”  Re[(l +i)f(O)]. 

The variation of the scattered wave intensity and phase is shown in figure 1 for two 
scatterers. For elliptical cylinders the intensity functions have more maxima and 
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Table 1. Convergence of the forward scattering amplitude for scattering of an incident E 
wave, 4, = 0, ko = 1 by an infinite elliptic cylinder of dielectric r(p) = 2.0 and semi-axes 
a = 3 ~ 1 2 ,  b = T. 

5 -4.4287 +i3.9122 
6 -4*6007+i3.9652 
7 -4.5928+i3.9708 
8 -4,5921 + i3.97 13 
9 -4.5918 +i3.9698 

Table 2. Forward and backward scattering amplitudes for scattering of an incident E wave, 
ko = 1 by infinite elliptic cylinders of dielectric c(p) = 2.0 and b = T. 

a lb  4, fE ' (0 )  fE" 

1.0 0 -1.568+i4.381 -0.875-iO.330 
1.2 0 -2.964 + i4.495 -0.450- i0.426 
1.4 0 -3.911 +i4*172 0.649 + i0.727 
1 *6 0 -5.12 +i3.38 -0.529+iO. 138 
2.0 0 -5.71 +i1.17 -0*158+i0*808 

1.2 x/2 -1.928+i5.008 -0.504 -i0.586 
1.4 712 -2.040+i5.557 -0.156-iO.330 
1.6 7712 -2.28 +i6.30 -0.354 +io* 131 
2.0 ~ / 2  -2.40 +i7.81 -1.074 - i0.230 

Table 3. Forward and backward scattering amplitudes for scattering of an incident H wave, 
ko = 1 by infinite elliptic cylinders of dielectric e@) = 2.0, and 6 = T. 

1.0 0 
1.2 0 
1.4 0 
1.6 0 
2.0 0 

-0,969 +i4*234 
-2.057 +i4.550 
-3.1 13 +i4.369 
-4.17 +i3.89 
-5.09 +i1.94 

1.2 T/2 
1.4 ?r/2 
1.6 ~ / 2  
2.0 TI2 

-1.253+i4.889 
-1.485+i5.560 
-1.72 +i6.24 
-2.27 +i7,67 

-0.383 +i0.0017 
0,161 +i0*016 
0.265+i0.442 
0.330-iO.077 
0.021+i1.26 

-0.455 +i0-081 
-0.676 + i0.076 
-0.830-io-097 
-0.580-iO.225 

minima in comparison with a circular scatterer of the same geometrical cross section. 
This is due to the excitation of higher-order partial waves inside the non-circular 
scatterer. In essence this property can be used in the determination of a/b  ratios from 
measurement results. 
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Figure 1. Scattered wave intensity and phase against observation angle 4. Full curves, 
a lb  = 2.0; broken curves, a lb  = 1.0, E-wave case. 

Comparison has been made with results published by Nelson and Eyges (1976) and 
a good agreement has been obtained. Nelson and Eyges (1976) commented that their 
results showed a substantial deviation from those of Yeh (1965), even for a / b  - 1. We 
find our results for the intensity in the backward direction differ significantly from those 
of Yeh (1969,  but agree with those of Nelson and Eyges (1976). 

4.2. Three-dimensional scatterers 

Numerical results have been obtained using the same method for three-dimensional 
scatterers. The details of the analysis for this case have been given elsewhere (Holt eta1 
1976a). The scattered field is defined by the relation 

where ê i elkjar is the incident wave, and f(k,, ki, gi) is the scattering amplitude at the 
observation direction k,. 

Numerical calculations have been performed for spheroids defined by the equation 

x 2 + y 2  z 2  
+ 7 = 1  

a 2  b (43) 

as shown in figure 2. The most important difference in scattering from spheroidal 
scatterers compared to that from spherical scatterers is the depolarizing properties 
caused by the non-sphericity when f ,  # 2. The depolarization occurs because for an 
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Figure 2. Scattering geometry for a spheroidal scatterer. 

arbitrary kl( #;) the two independent polarizations have different scattering amp- 
litudes, this difference increases as the incident wavevector ki approaches the x - y  
plane. In table 4 numerical results are given for several scatterers and three indepen- 
dent incident waves, corresponding to principal axes of the spheroids, the refractive 
index is no = JE = 1.33. 

We define the intensity function 

i ( e )  = If(k,; ki, gill2 (44) 
to be il(d) in the plane k, . y* = 0 and to be i2 (0)  in the plane I,. f = 0, when ki = 2, 
where we define 

COS e = k, . i. (45) 

In figures 3,4,5, we give il(e), i2 (e)  for four different scatterers. For small scatterers the 
patterns are similar to those for scatterers in the Rayleigh region. As the scatterer size 
increases il(0), i2(0) are more oscillatory due to interference effects between the 
higher-order partial waves. Just as for spherical scatterers, when the scatterer is large 
almost all the scattered energy is in the forward direction. 

We have also performed calculations to compare with those of Asano and 
Yamamoto (1975) and have obtained good agreement (see Holt et a1 1976b). 

Table 4. Forward scattering amplitudes for a range of spheroidal scatterers with a / b  = 2.0 
(oblate) and a / b  = 0.5 (prolate); no= 1.33. 

a b f(k0-2, koi, f )  f(k& kof, i) f(kof, kof, i) 

1.0 0.5 0.11 8 + i0.00767 0.0979+i0.00441 0.119 +i0.00679 
2.0 1.0 0.896+i0.270 0.857 +i0.154 1.033 +i0.265 
3.0 1.5 2.79 +i1.02 2.94 +il.30 3.19 +i1.88 
4.0 2.0 6.23 +i3.54 5.92 +i4.88 5.84 +i6.05 
5.0 2.5 10.8 +i7.46 8.71 +i11.7 8.33 +i13.2 
6.50 3.25 19.0 +i19.9 6.8 +i27.5 6.3 +i30.1 

0.5 1.0 0.05 15 + i0.00130 0.0604 + i0.00214 0.05 12 +i0.00148 
1.0 2.0 0.456 +i0.056 0.507 +i0.108 0.426 +i0.065 
1.5 3.0 1.67 +i0.545 1.56 +io588 1.42 +i0.354 
2.0 4.0 3.74 +i2.44 3.47 +il.84 3.38 +i1.39 
2.5 5.0 5.64 +i6.59 6.00 +i4.27 5.86 +i3.46 
3.25 6.50 4.4 i i16.4 10.6 + i l l . O  10.8 +i9.9 
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LO 80 120 1M 

Figure 3. i l ( O ) ,  i 2 (0 )  intensity functions for two spheroids ko = 1, de = 1.33. 
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- 
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20 60 1LO 0 

Figure4. i l ( O ) ,  i 2 (0 )  intensityfunctionsfor aprolate spheroidal scatterer, ko = 1, Je = 1.33. 
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Figure 5. i l( t9),  i 2 ( 8 )  intensity functions for an oblate spheroidal scatterer, k o  = 1, de  = 
1.33. 

5. Conclusion 

The method we have developed has been shown to be very suitable for obtaining the 
scattering amplitude for the scattering of electromagnetic radiation by homogeneous 
dielectric scatterers. For the optical case, we have obtained results for infinite elliptic 
cylinders, for spheroids and for ellipsoids (Holt er a1 1976b). Moreover it has been 
shown to be applicable to a very wide range of scatterers-from those in the Rayleigh 
region even up to the geometrical optics limit. The limitation is that certain matrix 
elements must be capable of being evaluated. Given this constraint, it should be 
possible to deal with inhomogeneous dielectrics and/or other shapes of scatterer. 
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